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[1] A new approach has been developed for solving solute transport problems in
randomly heterogeneous media using the Karhunen-Loève-based moment equation
(KLME) technique proposed by Zhang and Lu (2004). The KLME approach combines the
Karhunen-Loève decomposition of the underlying random conductivity field and the
perturbative and polynomial expansions of dependent variables including the hydraulic
head, flow velocity, dispersion coefficient, and solute concentration. The equations
obtained in this approach are sequential, and their structure is formulated in the same form
as the original governing equations such that any existing simulator, such as Modular
Three-Dimensional Multispecies Transport Model for Simulation of Advection,
Dispersion, and Chemical Reactions of Contaminants in Groundwater Systems
(MT3DMS), can be directly applied as the solver. Through a series of two-dimensional
examples, the validity of the KLME approach is evaluated against the classical Monte
Carlo simulations. Results indicate that under the flow and transport conditions examined
in this work, the KLME approach provides an accurate representation of the mean
concentration. For the concentration variance, the accuracy of the KLME approach is good
when the conductivity variance is 0.5. As the conductivity variance increases up to 1.0, the
mismatch on the concentration variance becomes large, although the mean
concentration can still be accurately reproduced by the KLME approach. Our results also
indicate that when the conductivity variance is relatively large, neglecting the effects of the
cross terms between velocity fluctuations and local dispersivities, as done in some
previous studies, can produce noticeable errors, and a rigorous treatment of the dispersion
terms becomes more appropriate.
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1. Introduction

[2] Subsurface fluid flow and transport processes often
take place in a complex geologic setting where permeability,
the key medium property in controlling flow and transport
behaviors, exhibits a high degree of spatial variability and
cannot be accurately characterized in all the details. As a
result, our model predictions of flow velocities and solute
concentrations are subject to a great deal of uncertainty. To
address the uncertainty issue in subsurface flow and trans-
port modeling, stochastic approaches have been developed

[Dagan, 1989; Gelhar, 1993; Cushman, 1997; Zhang, 2002;
Rubin, 2003].
[3] The majority of stochastic transport research has

emphasized on reproducing the ensemble averaged plume
behaviors using effective macrodispersion coefficients
[Gelhar et al., 1979; Dagan, 1984; Neuman and Zhang,
1990; Hu et al., 1999; Salandin and Fiorotto, 2000;
Darvini and Salandin, 2006]. Although the macrodisper-
sion approach provides a reasonable representation of the
gross spatial spreading of solutes due to random heteroge-
neity in permeability, it does not provide an estimation of
the uncertainty associated with the mean predictions (i.e.,
fluctuations around mean concentrations or concentration
variances). Since the early 1990s, concentration variance
has become a subject of great interest in various studies
[Dagan et al., 1992; Neuman, 1993; Kapoor and Gelhar,
1994a, 1994b; Zhang and Neuman, 1996; Dagan and
Fiori, 1997; Kapoor and Kitanidis, 1997; Morales-Casique
et al., 2006a, 2006b]. It has been demonstrated that while
the local-scale dispersion has a relatively insignificant
impact on the mean concentration predictions as compared
to the field-scale heterogeneities, it can exert a strong
influence on the concentration variance.
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[4] Stochastic approaches can be generally sorted into two
different frameworks, namely, Monte Carlo (MC) simula-
tions and the moment equation (ME) approaches. Since the
MC method is a brute force approach, it is computationally
demanding for large-scale problems and typically serves
only a benchmark role for evaluating the accuracy of other
approaches [Graham and McLaughlin, 1989; Hassan et al.,
1998]. In the ME approaches the statistical moment equa-
tions are directly derived for model predictions using the
perturbation technique [Neuman, 1993; Kapoor and Gelhar,
1994a, 1994b; Zhang and Neuman, 1995, 1996; Kapoor and
Kitanidis, 1997; Hu et al., 1999; Salandin and Fiorotto,
2000; Morales-Casique et al., 2006a, 2006b]. Through both
theoretical investigations and field data analysis, Kapoor
and Gelhar [1994a, 1994b] demonstrated the important role
of local dispersion in attenuating the concentration variance
over time. To mitigate the closure problems caused by
neglecting the triplet term in the macrodispersive flux in
the Eulerian approach, Hu et al. [1999] expanded the
concentration as an infinite series instead of the mean and
perturbation decomposition. The mean concentrations and
spatial moments were solved in the Fourier-Laplace space
up to different expansion orders in flow and transport,
respectively. Salandin and Fiorotto [2000] depicted an
analytical procedure that allows estimation of the global
dispersion tensor by taking into account both the pore-scale
dispersion and local-scale velocity fluctuations. Morales-
Casique et al. [2006a, 2006b] presented the first and second
MEs for advective-dispersive transport and proposed a
higher-order iterative closure scheme for a special case of
steady state flow with respect to the first order in conduc-
tivity variance.
[5] Compared to the MC simulations, the perturbative

moment solutions of stochastic flow and transport problems
are formally limited to mild medium variability although
data conditioning can certainly increase the effective range
to some extent. More recently, Neuman [2006] suggested
combining fractal and variational multiscale decompositions
in order to extend the applicability of perturbative ME
approaches in composite media where the heterogeneity
can be arbitrarily large. In general, analytical solutions of
the moment equations can be obtained with the aid of
Green’s function for some limiting cases under simplified
conditions. Numerical ME approaches are conceivable, but
the computational effort increases rapidly with the size of
the problem, thus limiting its applicability to large-scale
problems.
[6] In recent years a new class of stochastic approaches

have been developed that rely on the Karhunen-Loève (KL)
decomposition of the underlying random fields [Ghanem
and Spanos, 1991; Ghanem and Dham, 1998; Zhang and
Lu, 2004]. Unlike the conventional ME counterparts, the
KL-based approaches do not require solving the covariance
and cross-covariance matrices directly and thus become
more efficient computationally. Ghanem and Dham [1998]
combined the KL decomposition of random permeability
field and the orthogonal polynomial chaos expansions of
other stochastic dependent variables and applied the KL/
polynomial chaos method to a two-dimensional (2-D)
multiphase flow problem. Zhang and Lu [2004] proposed
to integrate the KL decomposition with perturbative and
polynomial expansions of stochastic dependent variables,

and the resulting methodology was referred to as the
Karhunen-Loève-based moment equation (KLME). In con-
trast to the KL/polynomial chaos method where equations
of different orders are interactively coupled, the equations in
the KLME approach are recursive and can be solved
sequentially from low to high orders. The KLME approach
has been applied to different types of problems including
conditional simulations, saturated-unsaturated, steady state
two-phase and unconfined flow [Lu and Zhang, 2004; Yang
et al., 2004; Chen et al., 2005; Liu et al., 2006].
[7] Motivated by the recent success in its flow applica-

tions, we apply the KLME technique to solve the stochastic
solute transport problems in this work. Both the mean
concentration and concentration variance are calculated.
Because of its importance, the local dispersion is included
and implemented in a rigorous manner. Some previous
studies [Kapoor and Gelhar, 1994a, 1994b; Zhang and
Neuman, 1996; Hu et al., 1999; Morales-Casique et al.,
2006a, 2006b] treated local dispersion as either a given
constant or a linear function of mean flow velocities.
Consistent with Salandin and Fiorotto [2000], here we
shall demonstrate that this simple approximation has
somehow underestimated the heterogeneity effects on
dispersion and can produce inappropriate results under
certain circumstances.
[8] The remainder of the paper is organized as follows.

We begin with a description of the mathematical model that
includes advection, dispersion, and external sinks/sources.
Next, we present the theoretical derivations of stochastic
transport formulations using the KLME approach and
describe the solution procedure. Finally, we evaluate the
validity of the KLME approach with a series of 2-D
examples by comparing to the results from MC simulations.

2. Methodology

2.1. Mathematic Model

[9] The transport of a conservative solute in 3-D ground-
water flow under the advection, dispersion and external
sinks/sources is given as

@C x; tð Þ
@t

¼ r � D x; tð ÞrC x; tð Þð Þ � r � v x; tð ÞC x; tð Þð Þ þ qsCs;

ð1aÞ

subject to the following initial and boundary conditions:

C x; 0ð Þ ¼ C0 xð Þ; x 2 W; ð1bÞ

C x; tð Þ ¼ CD x; tð Þ; x 2 GD; ð1cÞ

D x; tð ÞrC x; tð Þ � n xð Þ ¼ �F x; tð Þ; x 2 GN ; ð1dÞ

where C is the solute concentration; D is the hydrodynamic
dispersion tensor; v is the pore water velocity vector (vx(x, t),
vy(x, t), vz(x, t))

T (where superscript T indicates transpose);
qs and Cs are the flow rate and solute concentration in the
sinks/sources; x is the vector of spatial Cartesian coordinate
(x, y, z)T; t is time; C0 is the initial concentration in the
transport domain W; CD(x, t) is the specified concentration
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on the Dirichlet boundary segments GD; F(x, t) is the
dispersive flux across the Neumann boundary segments GN;
and n(x) is an outward unit vector normal to the boundary
GD [ GN. For simplicity, the spatial and temporal indices x
and t are omitted in the remainder of paper.
[10] The hydrodynamic dispersion tensor, D, in a locally

isotropic medium, with an accommodation made for
different orthogonal transverse dispersivity values, can be
expressed as [Burnett and Frind, 1987]

Dxx ¼ aLv
2
x þ aTHv

2
y þ aTV v

2
z

� �
= vj j þ D*;

Dyy ¼ aLv
2
y þ aTHv

2
x þ aTV v

2
z

� �
= vj j þ D*;

Dzz ¼ aLv
2
z þ aTHv

2
x þ aTV v

2
y

� �
= vj j þ D*;

Dxy ¼ Dyx ¼ aL � aTHð Þvxvy= vj j;

Dxz ¼ Dzx ¼ aL � aTVð Þvxvz= vj j;

Dyz ¼ Dzy ¼ aL � aTVð Þvyvz= vj j;

ð2Þ

where vx, vy, and vz are the components of the pore water
velocity v and jvj is its magnitude; aL is the longitudinal
dispersivity; aTH and aTV are the transverse dispersivities
in the horizontal and vertical directions, respectively; D* is
the molecular diffusion coefficient in porous media.
[11] Because of the uncertainty associated with the hy-

draulic conductivity (or permeability), the hydraulic head
and pore water velocity become stochastic, and so does the
concentration of the solute that is moved by flow. The
external sink/source term qsCs is assumed to be determi-
nistic. The objective of this work is to solve for the mean
solute concentration and the uncertainty associated with the
mean prediction through the concentration variance.
Stochastic solutions of flow problems using the KLME
approach can be found in our previous works [e.g., Zhang
and Lu, 2004; Lu and Zhang, 2004; Liu et al., 2006] and are
thus not repeated here.

2.2. Karhunen-Loève Expansion-Based Moment
Equations

[12] To solve (1) using the KLME approach, we first
expand the stochastic variables C, D, v into infinite series,

C ¼
X1
m¼0

CðmÞ; D ¼
X1
m¼0

D mð Þ; v ¼
X1
m¼0

v mð Þ; ð3Þ

where C(m), D(m) and v(m) are the mth-order expansions with
respect to the standard deviation of log hydraulic con-
ductivity, sY . The detailed expressions of v(m) related to the
variability of hydraulic head and hydraulic conductivity are
given by Lu and Zhang [2004]. The derivations of D(m) up
to the third order are provided in Appendix A. It is
noteworthy that in some previous studies [e.g., Kapoor and
Gelhar, 1994a, 1994b; Zhang and Neuman, 1996; Hu et al.,
1999; Morales-Casique et al., 2006a, 2006b], the dispersion
tensor D has been treated as given constants or linear
functions of mean flow velocities, and therefore the effects
of velocity variations on D are disregarded arbitrarily. As
will be demonstrated in the following sections, this
approximation, equivalent to using D(0) to approximate D

in (3), may become problematic in certain cases where
higher-order D(m) arising from the velocity fluctuations are
significant.
[13] Substituting (3) into (1a) and rearranging the sum-

mations, one obtains

X1
m¼0

@C mð Þ

@t
¼
X1
m¼0

Xm
k¼0

r � D kð ÞrCðm�kÞ
� �

�
X1
m¼0

Xm
k¼0

r � v kð ÞC m�kð Þ
� �

þ qsCs: ð4Þ

Note that the external sink/source term is assumed to be
deterministic and can thus be grouped with zeroth-order
terms (relaxing this assumption is straightforward [Zhang,
2002]). One can separate (4) at different expansion orders
with respect to sY:

zeroth order:

@C 0ð Þ

@t
¼ r � D 0ð ÞrC 0ð Þ

� �
�r � v 0ð ÞC 0ð Þ

� �
þ qsCs; ð5aÞ

subject to the initial and boundary conditions

C 0ð Þ x; 0ð Þ ¼ C0 xð Þ; x 2 W; ð5bÞ

C 0ð Þ x; tð Þ ¼ CD x; tð Þ; x 2 GD; ð5cÞ

D 0ð ÞrC 0ð Þ � n xð Þ ¼ �F; x 2 GN : ð5dÞ

first order:

@C 1ð Þ

@t
¼ r � D 0ð ÞrC 1ð Þ

� �
�r � v 0ð ÞC 1ð Þ

� �
þ g 1ð Þ; ð6aÞ

subject to

C 1ð Þ x; 0ð Þ ¼ 0; x 2 W; ð6bÞ

C 1ð Þ x; tð Þ ¼ 0; x 2 GD; ð6cÞ

D 0ð ÞrC 1ð Þ � n xð Þ ¼ �D 1ð ÞrC 0ð Þ � n xð Þ; x 2 GN ; ð6dÞ

where

g 1ð Þ ¼ r � D 1ð ÞrC 0ð Þ � v 1ð ÞC 0ð Þ
� �

: ð6eÞ

Similarly one can derive the equations at higher expansion
orders. Refer to Appendix B for the equations at the second,
third and general mth orders, m � 1. Equations (5)–(6), and
(B1)–(B9) are in principle equivalent to the formulations
solved by Hu et al. [1999] except that our equations have
been reformulated into the original form (1) with the
stochastic D and v replaced by the deterministic zeroth-order
terms D(0) and v(0). The terms involving higher-order D(m)

and v(m) at m� 1 are lumped into the randomness terms g(m).
[14] Unlike that of Hu et al. [1999], in the KLME method

the higher-order stochastic expansions (6), and (B1)–(B9)
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are not used explicitly to formulate the corresponding
moment equations, which can lead to a large dimensionality
as mentioned in section 1. Instead, C(m), D(m) and v(m) are
further expanded in terms of orthogonal standard random
variables,

C mð Þ ¼
X1

i1;i2;...;im¼1

Ym
j¼1

xij

 !
C

mð Þ
i1 ;i2;...;im

;

D mð Þ ¼
X1

i1;i2;...;im¼1

Ym
j¼1

xij

 !
D

mð Þ
i1 ;i2;...;im

;

v mð Þ ¼
X1

i1;i2;...;im¼1

Ym
j¼1

xij

 !
v

mð Þ
i1;i2;...;im

;

ð7Þ

where Ci1,i2,. . .,im
(m) , Di1,i2,. . .,im

(m) and vi1,i2,. . .,im
(m) are all deterministic

functions to be determined; i1, i2, � � �, im are referred to as
the expansion modes at the mth order; xij are the orthogonal
standard random variables. For instances, up to the third
order, C(1), C(2) and C(3) are expanded as

C 1ð Þ ¼
X1
i1¼1

xi1C
1ð Þ
i1
;C 2ð Þ ¼

X1
i1;i2¼1

xi1xi2C
2ð Þ
i1 ;i2

;

C 3ð Þ ¼
X1

i1;i2 ;i3¼1

xi1xi2xi3C
3ð Þ
i1;i2;i3

: ð8Þ

As shown by Lu and Zhang [2004] and in Appendix A,
Di1,i2,. . .,im

(m) and vi1,i2,. . .,im
(m) can be calculated after stochastic

head solutions are obtained. Ci1,i2,. . .,im
(m) are the quantities to

be solved for in this work as they provide the basis to
compute both the mean concentration and concentration
variance (as well as other higher concentration moments, if
desired).
[15] Substituting (7) into (6) and then dropping the

independent set {xi}, one obtains the following equations
for Ci1

(1) at the first-order mode i1,

@C
1ð Þ
i1

@t
¼ r � D 0ð ÞrC

1ð Þ
i1

� �
�r � v 0ð ÞC

1ð Þ
i1

� �
þ g

1ð Þ
i1
; ð9aÞ

subject to

C
1ð Þ
i1

x; 0ð Þ ¼ 0; x 2 W; ð9bÞ

C
1ð Þ
i1

x; tð Þ ¼ 0; x 2 GD; ð9cÞ

D 0ð ÞrC
1ð Þ
i1

� n xð Þ ¼ �D
1ð Þ
i1
rC 0ð Þ � n xð Þ; x 2 GN ; ð9dÞ

where

g
1ð Þ
i1

¼ r � D
1ð Þ
i1
rC 0ð Þ � v

1ð Þ
i1
C 0ð Þ

� �
: ð9eÞ

Similarly one can derive the equations for Ci1,i2,. . .,im
(m) at

higher expansion orders and modes. Refer to Appendix B
for the equations at the second-, third-, and general mth-
order modes i1, i2, � � �, im, m � 1.

[16] Once the deterministic coefficients Ci1,i2,. . .,im
(m) are

solved, one can easily compute the mean concentration and
concentration variance by some simple algebraic operations.
For example, up to the third order in sY,

C 

X3
m¼0

C mð Þ; ð10Þ

and the mean concentration can be approximated as

hCi 

X3
m¼0

hC mð Þi ¼ C 0ð Þ þ hC 2ð Þi ¼ C 0ð Þ þ
X1

i1¼i2¼1

C
2ð Þ
i1 ;i2

; ð11Þ

where the first term in the right-hand side is the zeroth-order
mean concentration solution and the second term represents
the second-order correction in sY. The terms Ci1,i2

(2) for i1 6¼ i2
disappear because hxi1xi2i is equal to zero. The first-order
correction is not involved because hxi1i is equal to zero.
[17] From (10) and (11), one can write the perturbation

term up to the third order in sY as,

C0 ¼ C � hCi 

X3
m¼1

C mð Þ �
X1

i1¼i2¼1

C
2ð Þ
i1;i2

: ð12Þ

The concentration variance can be calculated by squaring
(12) and then taking the ensemble mean,

s2
C 


X1
i1¼1

C
1ð Þ
i1

h i2
þ 2

X1
i1 ;i2¼1

C
2ð Þ
i1 ;i2

h i2
þ 6

X1
i1;i2¼1

C
1ð Þ
i1
C

3ð Þ
i1 ;i2;i2

h i
; ð13Þ

where the first term on the right-hand side is the
concentration variance up to the first order in the variance
of log conductivity sY

2, and the second and third terms
represent the second-order corrections in sY

2.
[18] Equations (5), (9), and (B10)–(B18) have the same

structure as the original transport equation (1). Therefore
any existing simulator, such as Modular Three-Dimensional
Multispecies Transport Model for Simulation of Advection,
Dispersion, and Chemical Reactions of Contaminants in
Groundwater Systems (MT3DMS) [Zheng and Wang,
1999], can be directly used to solve Ci1,i2,. . .,im

(m) . Moreover,
because of the same structure of these equations, the left-
hand-side coefficient matrix remains unchanged across
simulator calculations for different expansion orders and
modes, which further allows us to increase the computa-
tional efficiency of the KLME approach. Because of the
recursive nature, solving (5), (9), and (B10)–(B18) is a
sequential process from low to high expansion orders. At
the same order, the equations are independent of each other,
a feature that enables potential parallel computing for large-
scale problems. In this work, Ci1,i2,. . .,im

(m) is evaluated up to the
third order. The appropriate solution procedure is (1) at the
current time step, solve the zeroth-order equation (5) for
C(0), (2) solve (9) for Cil

(1) at the first-order mode i1,
(3) continue to solve (B10)–(B13) for the Ci1,i2

(2) at the
second-order mode i1, i2 and Ci1,i2,i3

(3) at the third-order mode
i1, i2, i3, (4) compute the mean and variance of concentra-
tion using (11) and (13), and (5) add a time increment and
repeat steps 1–4, if needed. In step 5 where the KLME
calculations reach the next transport step, if the flow field is
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transient, the flow velocities at the new time should be read
in and used in steps 1–4. A new code called ‘‘MT3DMS-
STO’’ has been developed to implement numerically the
stochastic formulation presented here, in which MT3DMS
is employed as a subroutine to calculate Ci1,i2,. . .,im

(m) at
different expansion orders m and modes i1, i2, � � �, im.

3. Illustrative Examples

[19] The validity of the KLME approach for stochastic
uncertainty analysis in solute transport problems is evaluated
through a series of 2-D numerical experiments. Results from
the proposedKLMEmethodology are compared to those from
the classical MC simulations. The log-transformed random
hydraulic conductivity field is assumed to be second-order
stationary and follows a separable exponential covariance
function,

CY x1; x2ð Þ ¼ s2
Y exp � jx1 � x2j

hx
� jy1 � y2j

hy

" #
; ð14Þ

where x1 = (x1, y1)
T and x2 = (x2, y2)

T are any two points in
the simulation domain, hx and hy are the correlation lengths
in x and y directions, respectively. In the following
examples, the correlation lengths are set to hx = hy = 1 m,
and the variance sy

2 varies from 0.5 to 1.5.

3.1. Numerical Model Setup

[20] The flow and transport domain is 30 m long by 10 m
wide (Figure 1). There is no flow across the northern (top)
and southern (bottom) boundaries; on the western (left) and
eastern (right) boundaries the hydraulic heads are prescribed
as constant at 10.03 and 10 m, respectively, such that an
average hydraulic gradient of 0.001 is achieved in the mean
flow direction. The model is discretized into a block-
centered finite difference grid of 121 columns and 40 rows
with uniform cell dimensions of 0.25 m by 0.25 m (one
extra column added to because of the particular eastern and
western boundary configurations). As a result, one correla-
tion length of log conductivity occupies 4 individual cells.
The simulated flow field is confined and steady state.

[21] In the transport simulations, zero concentration gra-
dient is specified across all four boundaries (the dispersive
boundary flux F is zero). The local dispersivity in the
longitudinal direction aL is set equal to 0.2 m while the
dispersivity ratio between transverse and longitudinal
directions (aTH/aL) remains constant at 0.1. All simulations
employ a uniform effective porosity of 0.35, and a
molecular diffusion coefficient of 5.0 � 10�4 m2/d. The
initial mass is distributed into a single cell and placed on the
central west-east line, 4.5 m downstream from the western
border (Figure 1). Line A-A0 indicates where the simulation
results will be analyzed in details.

3.2. KLME and Classical MC Approaches

[22] As mentioned earlier, in the KLME approach we
obtained the solutions of Ci1,i2,. . .,im

(m) up to the third order,

namely, C(0), Cil

(1), Ci1,i2
(2) and Ci1,i2,i3

(3) . In the following

examples Cil

(1) are calculated for the first 100 modes, i1 =
1; 100 at the first order; at the second order, Ci1,i2

(2) are
calculated for the first 30 by 30 modes, il , i2 = 1; 30; and at
the third order, Ci1,i2,i3

(3) are calculated for the first 20 by 20 by

20 modes, il, i2, i3 = 1; 20. The numbers of modes
here are chosen sufficiently large so that the statistics of
Ci1,i2,. . .,im

(m) converges at the respective expansion order m. In
order to achieve both the computational efficiency and
accuracy, the optimal combination of the mode numbers at
different orders may vary from case to case, depending on
the specific model setting and conductivity statistics under
consideration. Compared to those in the flow cases [Zhang
and Lu, 2004; Liu et al., 2006], a larger number of modes
are typically needed to assure the statistical convergence in
the KLME transport approach. The effects of the mode
numbers will be further examined in the following sections.
[23] As in the study by Liu et al. [2006], the mode

coefficients of the hydraulic head, hi1,i2,. . .,im
(m) , are solved by

MODFLOW-2000 [Harbaugh et al., 2000]. For the mode
coefficients of solute concentration, Ci1,i2,. . .,im

(m) , MT3DMS is
applied as a solver. Note that the KLME is essentially a
concentration gradient-based approach and therefore it is
particularly susceptible to numerical oscillation. As such, all
the transport terms are solved by an implicit General
Conjugate-Gradient (GCG) method in MT3DMS. To further
ensure numerical accuracy, the transport time step is
bounded by a Courant number of 0.50.
[24] In the MC simulations, 5000 realizations of the

conductivity field are used. The conductivity fields are
generated using the KL decomposition technique [Zhang
and Lu, 2004] with the leading 2000 eigenvalues and
eigenfunctions. MODFLOW-2000 and MT3DMS are
applied repeatedly to simulate the corresponding concentra-
tion solution for each conductivity realization. Upon the
completion of 5000 simulations, the ensemble statistics of
solute concentration is calculated as,

hCi 
 1

5000

X5000
k¼1

Ck ; ð15Þ

s2
C 
 1

4999

X5000
k¼1

Ck � hCið Þ2; ð16Þ

Figure 1. Schematic diagram of model setup in the 2-D
examples. Line A-A0 indicates where the simulation results
are compared between the KLME and MC approaches in
details.
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where Ck is the simulated solute concentration for
conductivity realization k.

3.3. Results and Discussions

3.3.1. Case for sY
2 = 0.5

[25] In this case we consider a log conductivity variance
sY
2 of 0.5, which can be converted to a coefficient of

variation of 80.5% for the original conductivity field before
the log transformation. The flow field is driven by the influx
across the western border and no other external stresses are
involved. Figure 2 displays the contours of mean concen-
tration from both MC simulations, i.e., (15), and the KLME
approach, i.e., (11), at different dimensionless times. The
dimensionless time is defined as t0 = hvxi t/hx, which
describes the number of correlation lengths the solute plume
has traveled in the mean flow direction up to time t.
[26] Figure 2 indicates that compared to the MC solution,

the zeroth-order KLME result, which is based only on the
geometric mean conductivity field, overestimates solute
spreading at the plume center while shows underestimation
toward the edges of plume. By adding the second-order
correction, i.e., the second term in (11), the result is much
improved and the match between the KLME approach and
MC simulations becomes significantly better. The accuracy
of the second-order KLME result to resemble those from

MC simulations is consistently good in both the transverse
and longitudinal directions through different times.
[27] As shown in (13), an obvious advantage of the

KLME approach is the ease at which the concentration
variance can be estimated by simple algebraic operations on
the mode expansions Ci1,i2,. . .,im

(m) . Figure 3 plots the
concentration variance calculated by the KLME approach
and MC simulations at different times for the same model
settings as in Figure 2. To facilitate visual observations,
only the second-order KLME result (i.e., with all three
terms in (13)) is presented. It can be seen that despite some
local mismatch, the overall concentration variability
estimated from the KLME approach is in good agreement
with the MC solution. The concentration variance is
bimodal in the flow direction, indicating that the solute
concentration has the largest variability in the limbs of
plume where the concentration gradient is relatively high.
The bimodal concentration variance behavior was also
observed by others [e.g., Zhang and Neuman, 1996; Rubin,
2003; Morales-Casique et al., 2006b].
[28] Figure 4 shows the mean concentration and concen-

tration variance along the profile A-A0. Being consistent
with the contours in Figure 2, the zeroth-order KLME
concentration shows a peak that is higher than that from
MC simulations and underpredicts the solute spreading in

Figure 2. Normalized mean concentration (hC/C0i) calculated from the MC simulations and KLME
approach at three different times: (a) t0 = 6, (b) t0 = 12, and (c) t0 = 18. C0 is the initial source
concentration. The filled contours stand for the result from MC simulations, the dashed lines stand for the
zeroth-order solution, and the solid lines stand for the result after the second-order correction in the
KLME approach. For reference, the initial source is also shown in Figure 2a.
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the areas toward the outside plume edges. The second-order
KLME concentration shows a significant improvement over
the zeroth-order result and matches the solution from MC
simulations very well at both the plume center and outside
edges. The accuracy of the KLME approach is well pre-
served through different times. For the concentration vari-
ance, the first-order KLME result, which is based on the
first term in (13) only, overshoots the bimodal peaks from
MC simulations and undershoots the low values at plume
center. The second-order correction, i.e., the second and
third terms in (13), improves the solution accuracy by
rectifying both the overestimation at the peaks and the
underestimation at the middle low values. Compared to
the mean concentration, the second-order improvement on
the concentration variance is to a lesser degree.
3.3.2. Effects of Mode Numbers
[29] In section 3.2 we mentioned that the mode numbers

at different expansion orders were specified a priori and
remained constant across different cases, although the
optimal combination of mode numbers could vary depend-
ing on the specific model setting and conductivity statistics
under consideration. Here we further investigate the effects
of mode numbers upon the concentration statistics in the
KLME approach. Figure 5 shows the mean concentration
calculated with different second-order mode numbers at t0 =
12 and sY

2 = 0.5 in the KLME approach. The model settings
in generating Figure 2 are used here. The effects of mode

numbers upon the concentration variance are not provided
here, because the computation of concentration variance
involves the modes from all the first three expansion orders
and a straightforward evaluation cannot be readily made.
Figure 5 indicates that the second-order correction on the
mean concentration is most significant during the first
20 modes, and thereafter the mode contribution decreases
progressively. Clearly, the computational effort can be further
reduced in the KLME approach by taking into account only
those modes that are contributing significantly.
3.3.3. Case for sY

2 = 1.0
[30] In this section we explore the performance of the

KLME approach when the conductivity variance sY
2 is

increased to 1.0. The corresponding coefficient of variation
is 131.1% for the original conductivity field. Other settings
remain identical to those in Figure 1. Figure 6 displays the
mean concentration and concentration variance calculated
by the KLME approach and MC simulations at sY

2 = 1.0. It
is seen that when the conductivity variance increases to 1.0,
the mean concentration is still accurately reproduced by the
KLME approach. For the concentration variance, however,
the mismatch between the KLME approach and MC
simulations becomes significant especially at the plume
center. The second-order KLME correction largely over-
predicts the low values between the bimodal peaks from
MC simulations.

Figure 3. Concentration variance (sC/C0

2 ) calculated from the MC simulations and KLME approach at
three different times: (a) t0 = 6, (b) t0 = 12, and (c) t0 = 18. To facilitate the visual comparison, only the
second-order result is provided in the KLME approach.
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[31] When the conductivity variance is large, the inade-
quacy of perturbative approaches to estimate the concentra-
tion variance has been also been documented in some recent
literature [e.g., Morales-Casique et al., 2006b; Neuman,
2006]. The KLME approach developed in this paper has
been shown to be effective for predicting the concentration
variance when the conductivity variance is 0.5, but becomes
problematic when the conductivity variance increases to
1.0. Morales-Casique et al. [2006b] reported that their
iterative perturbative solutions of the concentration variance
were only applicable for sY

2 < 0.3. Conceivably, this
limitation can be potentially overcome by the new multi-
scale decomposition approach proposed by Neuman [2006].

[32] Because of the loss of accuracy on the concentration
variance, the KLME approach is suggested mainly as a tool
for evaluating the mean concentration when the conductiv-
ity variance is 1.0 or larger. Additional simulations (not
reported here) indicate that the mean concentration calcu-
lated by the KLME approach remains accurate at sY

2 < 1.5
and the mismatch error starts to elevate when sY

2 is 1.5 or
larger.
3.3.4. Computational Efforts in KLME
[33] The computational efforts in the KLME approach are

directly proportional to the number of mode coefficients
Ci1,i2,. . .,im

(m) involved at each expansion order m. As mentioned
in section 3.2, to compute the mean concentration and
concentration variance, we used 100, 30 by 30 and 20 by 20

Figure 4. Mean and variance of concentration along the profile A-A0 at three different times in Figure 2:
(a) t0 = 6, (b) t0 = 12, and (c) t0 = 18.
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by 20 modes at the first, second and third orders, respectively.
The total number of mode calculations (plus the zeroth-order
C(0)) is 1676. For both sY

2 = 0.5 and 1.0, the actual CPU time
taken by the KLME approach was about 11 hours on a
Xeon(TM)-PC equipped with a 3.20 GHz processor with 1 Gb
of memory. In the MC simulations, it took about 17 hours to
finish the simulation of 5000 realizations for sY

2 = 0.5, and
about 22 hours for sY

2 = 1.0. In the KLME approach, different
mode calculations are always conducted on the smooth
geometrical mean conductivity field. As a result, the CPU
time does not change with the conductivity variance. In the
MC simulations, however, the conductivity variability in each
realization increases as the variance becomes large.
Correspondingly, the CPU time increases as the transport
step size is constrained by the Courant number 0.5.
[34] It should be pointed out that when the KLME

approach is used only to predict the mean concentration,
the computational efforts can be reduced dramatically as the
mode calculations at the third expansion order are not
needed anymore. For instance, if 30 by 30 modes at the
second expansion order are used in estimating the mean
concentration, the total number of mode calculations is 1
(zeroth order) + 30 (first order, not directly involved in the
mean concentration but needed in the second-order mode

calculations) + 30 (second order, the off-diagonal mode
coefficients Ci1,i2

(2) for il 6¼ i2 not involved in the mean
concentration) = 61. In other words, while a total of 1676
mode coefficients are used to compute the mean and
variance of concentration in the KLME approach, only 61
of them are involved for computing the mean concentration.
In addition, as shown in section 3.2.2, the number of modes
required may be further reduced by taking in account only
those modes that are contributing significantly.
[35] Because the structure of the mode coefficient equa-

tions (i.e., (5), (9), and (B10)– (B18)) is the same at
different orders and modes, the left-hand side coefficient
matrix involved in each MT3DMS subroutine calculation
remains identical. This feature can further allow us to
significantly reduce the computational efforts required by
the KLME approach. Similar to the MC simulations,
parallel computing is possible in the KLME approach as
the mode equations are independent of one another at each
expansion order.
3.3.5. Higher-Order Dispersion Terms
[36] As mentioned earlier, unlike some previous studies

[Kapoor and Gelhar, 1994a, 1994b; Zhang and Neuman,
1996; Hu et al., 1999; Morales-Casique et al., 2006a,
2006b] where the local dispersion has been treated as given
constants or simple functions of mean velocities, here we
consider the effects of velocity variations upon local
dispersion by including the higher-order D(m) terms in the
KLME formulation. Figure 7 compares the mean concen-
tration calculated by the KLME approach between the case
where only the zeroth-order dispersion term D(0) is used and
the case where the higher-order terms D(1), D(2), and D(3) are
also included. For sY

2 = 0.5, the mean concentration does not
change much after including the higher-order dispersion
terms and all the results are in excellent agreement with
each other. For sY

2 = 1.0, however, the mean concentration
without considering the contributions of higher-order disper-
sion terms is apparently asymmetric and skews toward the
downgradient side of plume center. Clearly, when the
conductivity variance increases, the effects of the higher-
order dispersion terms become more significant and a
rigorous treatment of the dispersion terms ismore appropriate.
3.3.6. Presence of Pumping Well
[37] To explore the performance of the KLME approach

under the influence of external stresses, a pumping well is

Figure 5. Mean concentration calculated with different
second-ordermode numbers at t0 = 12 in theKLME approach.
Model settings are identical to those in Figure 1.

Figure 6. Mean and variance of concentration along the profile A-A0 at t0 = 12 when sY
2 is increased

to 1.0.
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added and placed at the center of domain with a pumping
rate of 1.0 m3/d (Figure 8). An observation well is also
installed at 5 m upstream of the pumping well. The
conductivity variance is 0.5. The zeroth-order concentration
at t0 = 3 for the case in Figure 2 is applied as the distributed
initial source. Other model settings remain identical to those
in Figure 1. It is noteworthy that the computational efforts in
the MC simulations are increased dramatically by including
the pumping well. The CPU time for completing the
simulation of 5000 realizations in the MC simulations is
108.5 hours, significantly longer than 16.5 hours in the
KLME approach.
[38] Figure 8 displays the head contours after the pumping

well is included. The flow field is based on the geometric
mean conductivity in the KLME approach. The hydraulic
head and velocity are significantly altered by the pumping
well as compared to those in the previous cases. Note that
after adding a pumping well, the flow velocity field becomes
strongly nonstationary even though the underlying conduc-
tivity is specified as second-order stationary.
[39] Figure 9 shows the mean concentration and concen-

tration variance calculated at the pumping and observation
wells through different times. For the mean concentration,
the zeroth-order KLME result overshoots the values calcu-
lated from the MC simulations at both wells and the second-
order correction improves the solution accuracy significantly.
For the concentration variance, the first-order KLME result
overshoots both peaks at the pumping well and the second
peak at the observation well, and the second-order correc-
tion yields a better agreement with the MC solution. It can
be seen that the largest variability of solute concentration at
both wells does not correspond to the mean concentration
breakthrough peak. For instance, the first variance peak at

the observation well appears shortly before the mean
concentration peak arrival (�10 days), and the second
peak shows up in later times after the main plume passes
by (�25 days). This is because instead of at the plume
center, the concentration fluctuation occurs most signifi-
cantly at the limbs where the spatial gradient of solute
concentration is largest.

4. Summary and Conclusions

[40] In this paper we have developed a new approach for
solving subsurface solute transport problems in randomly
heterogeneous media using the Karhunen-Loève-based mo-
ment equation (KLME) technique proposed by Zhang and
Lu [2004]. The KLME approach is based on an innovative
combination of the Karhunen-Loève (KL) decomposition of
the underlying random conductivity field and the perturba-
tive and polynomial expansions of dependent variables
including the hydraulic head, flow velocity, dispersion
coefficient, and solute concentration. The equations
obtained in this approach are recursive and can be solved
sequentially from low to high orders. The structure of these
equations has been formulated in the same form as the
original governing equations such that any existing
simulator, such as MT3DMS [Zheng and Wang, 1999],
can be directly applied as the solver. The theoretical
derivations presented in this work have been numerically
implemented in a code called ‘‘MT3DMS-STO.’’
[41] The validity of the KLME approach has been eval-

uated against the classical Monte Carlo (MC) simulations in
a series of 2-D numerical experiments under different flow
and transport conditions. Results indicated that the KLME
approach yielded a good representation of the mean con-
centration from the MC simulations after the second-order
correction at both the conductivity variance 0.5 and 1.0.
Further simulations (not reported here) showed that the
mismatch of the KLME approach on the mean concentra-
tion became elevated when the conductivity variance was
1.5 or larger. For the concentration variance, the KLME
approach was effective in reproducing the MC solution at
the conductivity variance 0.5. When the conductivity vari-
ance was increased to 1.0, the KLME approach generated
noticeable errors as compared to the MC solution. As such,
the KLME approach is suggested mainly as a tool for
evaluating the mean concentration when the conductivity
variance becomes large.
[42] When the conductivity variance is large, the inade-

quacy of perturbative approaches to estimate the concentra-
tion variance has also been documented in the recent

Figure 7. Mean concentration calculated by the KLME
approach between the case where only the zeroth-order
dispersion term D(0) is used and the case where the higher-
order terms D(1), D(2), and D(3) are also included at (a) sY

2=
0.5 and (b) sY

2= 1.0. Results are shown for t0 = 12.

Figure 8. Head contours after the pumping well is turned
on at a rate of 1.0 m3/d. The flow field is based on the
geometric mean conductivity in the KLME approach.
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literature [e.g., Morales-Casique et al., 2006b; Neuman,
2006]. Morales-Casique et al. [2006b] reported that their
iterative perturbative solutions of the concentration variance
were only applicable for sY

2 < 0.3. Although the ensemble
averaged plume behaviors have been characterized with
success by various perturbation methods developed over the
past two decades [Gelhar et al., 1979; Dagan, 1984;
Neuman and Zhang, 1990; Hu et al., 1999; Salandin and
Fiorotto, 2000; Darvini and Salandin, 2006], the applic-
ability of the perturbative approaches to predict the
concentration variance is still limited to small conductivity
variance. That challenge remains open.
[43] Some specific conclusions can be drawn from the

results of the 2-D examples considered in this work. First,
compared to the MC solution, the zeroth-order mean con-
centration calculated by the KLME approach tends to
overpredict at the plume center and underpredict at the
outside plume edges. The second-order correction is able to
rectify the mismatch in both areas. The accuracy of the
mean concentration in the KLME approach is consistently
good through different times. Second, the first-order con-
centration variance in the KLME approach tends to over-
estimate the bimodal peaks calculated by the MC

simulations at the limbs of plume where the concentration
gradient is largest. At the plume center, the concentration
variance is small and the first-order KLME result shows
some underestimation. When the conductivity variance is
not large, the second-order KLME correction is able to
improve the variance mismatch at both the peaks and
middle low values. Third, when the conductivity variance
is large, neglecting the higher-order dispersion terms can
generate noticeable errors and a rigorous treatment of the
dispersion terms becomes more appropriate. Fourth, the
validity of the KLME approach maintains in the presence
of a pumping well. Because of the pumping well, the flow
velocity field becomes strongly nonstationary. Nonetheless,
the KLME approach provides a fairly accurate estimation
of the mean concentration and concentration variance at
both the pumping and observation wells.
[44] It should be emphasized that the KLME approach

provides considerable computational advantages as compared
to the classical MC simulations as well as other perturbative
techniques. Because the expanded equations at different
orders and modes have the same structure as the original
governing equations, any existing transport codes can be
directly applied as the solver in the KLME approach. This

Figure 9. Breakthrough curves for the mean concentration and concentration variance at (a) the
pumping well and (b) the observation well.
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has not been possible in the traditional perturbative
approaches where the integrodifferential moment equations
are typically solved with the aid of some advanced trans-
formations (e.g., Green’s function). Compared to the MC
simulations, the KLME approach requires much less compu-
tational effort when it is applied as the tool for computing the
mean concentration only. In addition, while the CPU time in
the MC simulations can increase significantly with the con-
ductivity variance and in the presence of the pumping well,
the computational effort in the KLME approach remains
relatively unaffected as different mode coefficients are always
evaluated on the geometric mean conductivity field.

Appendix A: Higher-Order Expansions of
Dispersion Tensor D

[45] Let W = 1/jvj, Ux = vx
2, Uy = vy

2, Uz = vz
2, DxxL = aL vx

2/
jvj, DxxTH = aTH vy

2/jvj and DxxTV = aTVvz
2/jvj, then

DxxL ¼ aLUxW ;DxxTH ¼ aTHUyW ;DxxTV ¼ aTVUzW ; ðA1Þ

and

Dxx ¼ DxxL þ DxxTH þ DxxTV þ D*: ðA2Þ

By approximating the pore water velocities up to the third
order in sY, W can be expanded as

W ¼ 1= vj j ¼ v2x þ v2y þ v2z

� ��1=2


 v 0ð Þ
x þ v 1ð Þ

x þ v 2ð Þ
x þ v 3ð Þ

x

� �2�

þ v 0ð Þ
y þ v 1ð Þ

y þ v 2ð Þ
y þ v 3ð Þ

y

� �2
þ v 0ð Þ

z þ v 1ð Þ
z þ v 2ð Þ

z þ v 3ð Þ
z

� �2��1=2

¼ 1

v 0ð Þj j
1þ Tð Þ�1=2; ðA3Þ

where

v 0ð Þ

 

 ¼ v 0ð Þ
x

� �2
þ v 0ð Þ

y

� �2
þ v 0ð Þ

z

� �2� �1=2

; ðA4Þ

and

T ¼ 1

v 0ð Þj j2
�
2 v 0ð Þ

x v 1ð Þ
x þ v 0ð Þ

y v 1ð Þ
y þ v 0ð Þ

z v 1ð Þ
z

� �

þ v 1ð Þ2
x þ v 1ð Þ2

y þ v 1ð Þ2
z

� �
þ 2 v 0ð Þ

x v 2ð Þ
x þ v 0ð Þ

y v 2ð Þ
y þ v 0ð Þ

z v 2ð Þ
z

� �
þ 2 v 0ð Þ

x v 3ð Þ
x þ v 0ð Þ

y v 3ð Þ
y þ v 0ð Þ

z v 3ð Þ
z

� �
þ 2 v 1ð Þ

x v 2ð Þ
x þ v 1ð Þ

y v 2ð Þ
y þ v 1ð Þ

z v 2ð Þ
z

� �
þ O s4

Y

� ��
: ðA5Þ

Applying Taylor expansion to (A3) and truncating it at the
third order give

W 
 1

jv 0ð Þj
1� 1

2
T þ 3

8
T2 � 5

16
T 3

� �
: ðA6Þ

Substituting (A5) in (A6) and separating W at different
orders W(m) yield

W 0ð Þ ¼ 1

jv 0ð Þj
; ðA7Þ

W 1ð Þ ¼ �1

jv 0ð Þj3
v 0ð Þ
x v 1ð Þ

x þ v 0ð Þ
y v 1ð Þ

y þ v 0ð Þ
z v 1ð Þ

z

� �
; ðA8Þ

W 2ð Þ ¼ �1

2jv 0ð Þj3
v 1ð Þ2
x þ v 1ð Þ2

y þ v 1ð Þ2
z þ 2v 0ð Þ

x v 2ð Þ
x

�

þ 2v 0ð Þ
y v 2ð Þ

y þ 2v 0ð Þ
z v 2ð Þ

z Þ þ 3

2jv 0ð Þj5

� v 0ð Þ
x v 1ð Þ

x þ v 0ð Þ
y v 1ð Þ

y þ v 0ð Þ
z v 1ð Þ

z

� �2
; ðA9Þ

W 3ð Þ ¼ �1

jv 0ð Þj3
v 0ð Þ
x v 3ð Þ

x þ v 0ð Þ
y v 3ð Þ

y þ v 0ð Þ
z v 3ð Þ

z

�

þ v 1ð Þ
x v 2ð Þ

x þ v 1ð Þ
y v 2ð Þ

y þ v 1ð Þ
z v 2ð Þ

z Þ
þ 3

2jv 0ð Þj5
v 0ð Þ
x v 1ð Þ

x þ v 0ð Þ
y v 1ð Þ

y þ v 0ð Þ
z v 1ð Þ

z

� �
� v 1ð Þ2

x þ v 1ð Þ2
y þ v 1ð Þ2

z þ 2v 0ð Þ
x v 2ð Þ

x þ 2v 0ð Þ
y v 2ð Þ

y þ 2v 0ð Þ
z v 2ð Þ

z

� �
� 5

2jv 0ð Þj7
v 0ð Þ
x v 1ð Þ

x þ v 0ð Þ
y v 1ð Þ

y þ v 0ð Þ
z v 1ð Þ

z

� �3
: ðA10Þ

Up to third order in sY, Ux can be approximated as

Ux 
 v 0ð Þ
x þ v 1ð Þ

x þ v 2ð Þ
x þ v 3ð Þ

x

� �2
: ðA11Þ

Separating Ux at different orders gives

U 0ð Þ
x ¼ v 0ð Þ

x

� �2
; ðA12Þ

U 1ð Þ
x ¼ 2v 0ð Þ

x v 1ð Þ
x ; ðA13Þ

U 2ð Þ
x ¼ 2v 0ð Þ

x v 2ð Þ
x þ v 1ð Þ

x

� �2
; ðA14Þ

U 3ð Þ
x ¼ 2v 0ð Þ

x v 3ð Þ
x þ 2v 1ð Þ

x v 2ð Þ
x : ðA15Þ

DxxL can be approximated as

DxxL ¼ aLUxW


 aL U 0ð Þ
x þ U 1ð Þ

x þ U 2ð Þ
x þ U 3ð Þ

x

� �
� W 0ð Þ þW 1ð Þ þW 2ð Þ þW 3ð Þ
� �

: ðA16Þ
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Separating DxxL at different orders gives

D
0ð Þ
xxL ¼ aLU

0ð Þ
x W 0ð Þ; ðA17Þ

D
1ð Þ
xxL ¼ aL U 0ð Þ

x W 1ð Þ þ U 1ð Þ
x W 0ð Þ

� �
; ðA18Þ

D
2ð Þ
xxL ¼ aL U 0ð Þ

x W 2ð Þ þ U 1ð Þ
x W 1ð Þ þ U 2ð Þ

x W 0ð Þ
� �

; ðA19Þ

D
3ð Þ
xxL ¼ aL U 0ð Þ

x W 3ð Þ þ U 1ð Þ
x W 2ð Þ

�
þU 2ð Þ

x W 1ð Þ þ U 3ð Þ
x W 0ð Þ

�
:

ðA20Þ

Similarly one can formulate the expansions of DxxTH and
DxxTV at different orders. Dxx (equation A2) can then be
approximated up to the third order in sY as

Dxx 
 D 0ð Þ
xx þ D 1ð Þ

xx þ D 2ð Þ
xx þ D 3ð Þ

xx ; ðA21Þ

where

D 0ð Þ
xx ¼ D

0ð Þ
xxL þ D

0ð Þ
xxTH þ D

0ð Þ
xxTV þ D*; ðA22Þ

D 1ð Þ
xx ¼ D

1ð Þ
xxL þ D

1ð Þ
xxTH þ D

1ð Þ
xxTV ; ðA23Þ

D 2ð Þ
xx ¼ D

2ð Þ
xxL þ D

2ð Þ
xxTH þ D

2ð Þ
xxTV ; ðA24Þ

D 3ð Þ
xx ¼ D

3ð Þ
xxL þ D

3ð Þ
xxTH þ D

3ð Þ
xxTV : ð25Þ

Because of the identical structure as shown in (2), the above
procedure applies exactly to the derivations of Dyy and Dzz

and will be not repeated here.
[46] To derive the expansions for the cross terms Dxy =

Dyx = (aL � aTH)vxvy/jvj, letting Rxy = vxvy and substituting
in the velocity expansions up to the third order, and then
separating it at different orders, one obtains

R 0ð Þ
xy ¼ v 0ð Þ

x v 0ð Þ
y ; ðA26Þ

R 1ð Þ
xy ¼ v 0ð Þ

x v 1ð Þ
y þ v 1ð Þ

x v 0ð Þ
y ; ðA27Þ

R 2ð Þ
xy ¼ v 0ð Þ

x v 2ð Þ
y þ v 1ð Þ

x v 1ð Þ
y þ v 2ð Þ

x v 0ð Þ
y ; ðA28Þ

R 3ð Þ
xy ¼ v 0ð Þ

x v 3ð Þ
y þ v 1ð Þ

x v 2ð Þ
y þ v 2ð Þ

x v 1ð Þ
y þ v 3ð Þ

x v 0ð Þ
y : ðA29Þ

Dxy = Dyx can then be approximated up to the third order in
sY as

Dxy ¼ Dyx 
 D 0ð Þ
xy þ D 1ð Þ

xy þ D 2ð Þ
xy þ D 3ð Þ

xy ; ðA30Þ

where

D 0ð Þ
xy ¼ D 0ð Þ

yx ¼ aL � aTHð ÞR 0ð Þ
xy W

0ð Þ; ðA31Þ

D 1ð Þ
xy ¼ D 1ð Þ

yx ¼ aL � aTHð Þ R 0ð Þ
xy W

1ð Þ þ R 1ð Þ
xy W

0ð Þ
� �

; ðA32Þ

D 2ð Þ
xy ¼ D 2ð Þ

yx ¼ aL � aTHð Þ � R 0ð Þ
xy W

2ð Þ þ R 1ð Þ
xy W

1ð Þ þ R 2ð Þ
xy W

0ð Þ
� �

;

ðA33Þ

D 3ð Þ
xy ¼ D 3ð Þ

yx

¼ aL � aTHð Þ
� R 0ð Þ

xy W
3ð Þ þ R 1ð Þ

xy W
2ð Þ þ R 2ð Þ

xy W
1ð Þ þ R 3ð Þ

xy W
0ð Þ

� �
: ðA34Þ

The derivations of Dxz = Dzx and Dyz = Dzy are similar and
thus not repeated here. The expansion mode coefficients for
the entire dispersion tensor Di1,i2,. . .,im

(m) can be obtained by
directly substituting in the respective velocity expansion
coefficients vi1,i2,. . .,im

(m) [Lu and Zhang, 2004].

Appendix B: Derivations of Higher-Order
Equations

[47] Separating (4) at the second and third orders, one
obtains the following equations for the concentration expan-
sions C(2) and C(3):

@C 2ð Þ

@t
¼ r � D 0ð ÞrC 2ð Þ

� �
�r � v 0ð ÞC 2ð Þ

� �
þ g 2ð Þ; ðB1Þ

@C 3ð Þ

@t
¼ r � D 0ð ÞrC 3ð Þ

� �
�r � v 0ð ÞC 3ð Þ

� �
þ g 3ð Þ; ðB2Þ

where

g 2ð Þ ¼ r � D 2ð ÞrC 0ð Þ þ D 1ð ÞrC 1ð Þ � v 2ð ÞC 0ð Þ � v 1ð ÞC 1ð Þ
� �

;

ðB3Þ

g 3ð Þ ¼ r � D 3ð ÞrC 0ð Þ þ D 2ð ÞrC 1ð Þ þ D 1ð ÞrC 2ð Þ
�

� v 3ð ÞC 0ð Þ � v 2ð ÞC 1ð Þ � v 1ð ÞC 2ð ÞÞ: ðB4Þ

In general, at mth order, m � 1:

@C mð Þ

@t
¼ r � D 0ð ÞrC mð Þ

� �
�r � v 0ð ÞC mð Þ

� �
þ g mð Þ; ðB5Þ

subject to initial and boundary conditions

C mð Þ x; 0ð Þ ¼ 0; x 2 W; ðB6Þ

C mð Þ x; tð Þ ¼ 0; x 2 GD; ðB7Þ
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D 0ð ÞrC mð Þ � n xð Þ ¼ �
Xm�1

i¼0

D m�ið ÞrC ið Þ � n xð Þ; x 2 GN ; ðB8Þ

where

g mð Þ ¼ r �
Xm�1

i¼0

D m�ið ÞrC ið Þ � v m�ið ÞC ið Þ
� �

: ðB9Þ

The governing equations for the second-and third-order
mode expansion coefficients Ci1,i2

(2) and Ci1,i2,i3
(3) are

@C
2ð Þ
i1;i2

@t
¼ r � D 0ð ÞrC

2ð Þ
i1;i2

� �
�r � v 0ð ÞC

2ð Þ
i1 ;i2

� �
þ g

2ð Þ
i1;i2

; ðB10Þ

@C
3ð Þ
i1;i2 ;i3

@t
¼ r � D 0ð ÞrC

3ð Þ
i1 ;i2 ;i3

� �
�r � v 0ð ÞC

3ð Þ
i1;i2 ;i3

� �
þ g

3ð Þ
i1;i2;i3

;

ðB11Þ

where

g
2ð Þ
i1;i2

¼ r � D
2ð Þ
i1 ;i2

rC 0ð Þ þ
�
D

1ð Þ
i1
rC

1ð Þ
i2

þ D
1ð Þ
i2
rC

1ð Þ
i1

�
=2

�
� v

2ð Þ
i1;i2

C 0ð Þ �
�
v

1ð Þ
i1
C

1ð Þ
i2

þ v
1ð Þ
i2
C

1ð Þ
i1

�
=2
�

ðB12Þ

g
3ð Þ
i1;i2 ;i2

¼ r � D
3ð Þ
i1;i2;i3

rC 0ð Þ
�

þ
�
D

2ð Þ
i1;i2

rC
1ð Þ
i3

þ D
2ð Þ
i1;i3

rC
1ð Þ
i2

þ D
2ð Þ
i2;i3

rC
1ð Þ
i1

�
=3

þ
�
D

1ð Þ
i1
rC

2ð Þ
i2;i3

þ D
1ð Þ
i2
rC

2ð Þ
i1;i3

þ D
1ð Þ
i3
rC

2ð Þ
i1;i2

�
=3

� v
3ð Þ
i1 ;i2;i3

C 0ð Þ �
�
v

2ð Þ
i1 ;i2

C
1ð Þ
i3

þ v
2ð Þ
i1 ;i3

C
1ð Þ
i2

þ v
2ð Þ
i2 ;i3

C
1ð Þ
i1

�
=3

�
�
v

1ð Þ
i1
C

2ð Þ
i2;i3

þ v
1ð Þ
i2
C

2ð Þ
i1;i3

þ v
1ð Þ
i3
C

2ð Þ
i1;i2

�
=3
�
: ðB13Þ

In general, at mth order and mode i1,i2,. . .,im, m � 1:

@C
mð Þ
i1 ;i2;...;im

@t
¼ r � D 0ð ÞrC

mð Þ
i1;i2;...;im

� �
�r � v 0ð ÞC

mð Þ
i1;i2;...;im

� �
þ g

mð Þ
i1;i2 ;...;im

; ðB14Þ

subject to initial and boundary conditions

C
mð Þ
i1;i2;...;im

x; 0ð Þ ¼ 0; x 2 W; ðB15Þ

C
mð Þ
i1 ;i2;...;im

x; tð Þ ¼ 0; x 2 GD; ðB16Þ

D 0ð ÞrC
mð Þ
i1;i2;...;im

� n xð Þ ¼ �
Xm�1

k¼0

m� kð Þ!
m!

�

�
X

Pi1 ;i2 ;...;im

D
m�kð Þ
ikþ1;...;im

rC
kð Þ
i1;...;ik

� ��
� n xð Þ;

x 2 GN ; ðB17Þ

where

g
mð Þ
i1 ;i2;...;im

¼ r �
Xm�1

k¼0

"
m� kð Þ!
m!

:

�
X

Pi1 ;i2 ;...;im

D
m�kð Þ
ikþ1;...;im

rC
kð Þ
i1;...;ik

� v
m�kð Þ
ikþ1;...;im

C
kð Þ
i1;...;ik

� �#
:

ðB18Þ
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